Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine.
نویسندگان
چکیده
In fragile X syndrome, hypermethylation of the expanded CGG repeat and of the upstream promoter leads to transcriptional silencing of the FMR1 gene. Absence of the FMR1 protein results in mental retardation. We previously proved that treatment with 5-azadeoxycytidine (5-azadC) of fragile X cell lines results in reactivation of the FMR1 gene. We now show that this treatment causes passive demethylation of the FMR1 gene promoter. We employed the bisulfite-sequencing technique to detect the methylation status of individual CpG sites in the entire promoter region, upstream of the CGG repeat. Lymphoblastoid cell lines of fragile X males with full mutations of different sizes were tested before and after treatment with 5-azadC at various time points. We observed that individual cells are either completely unmethylated or not, with few relevant exceptions. We also investigated the extent of methylation in the full mutation (CGG repeat) itself by Southern blot analysis after digestion with methylation-sensitive enzymes Fnu4HI and McrBC and found that the CGG repeat remains at least partially methylated in many cells with a demethylated promoter. This may explain the quantitative discrepancy between the large extent of promoter demethylation and the limited levels of FMR1 transcriptional reactivation estimated by quantitative real-time fluorescent RT-PCR analysis.
منابع مشابه
Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene.
Most fragile X syndrome patients have expansion of a (CGG)(n)sequence with >200 repeats (full mutation) in the FMR1 gene responsible for this condition. Hypermethylation of the expanded repeat and of the FMR1 promoter is almost always present and apparently suppresses transcription, resulting in absence of the FMR1 protein. We recently showed that transcriptional reactivation of FMR1 full mutat...
متن کاملTranscriptional Reactivation of the FMR1 Gene. A Possible Approach to the Treatment of the Fragile X Syndrome†
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG expansion over 200 repeats (full mutation, FM) at the 5' untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene and subsequent DNA methylation of the promoter region, accompanied by additional epigenetic histone modifications that result in a block of transcription and abse...
متن کاملModulation of methylation in the FMR1 promoter region after long term treatment with L-carnitine and acetyl-L-carnitine.
Fragile X syndrome (FXS) is a triplet repeat disorder caused by a large expansion of the CGG repeat in the 5′-untranslated region (UTR) of the fragile X mental retardation (FMR1) gene. 2 Full mutation alleles are almost always associated with extensive hypermethylation of the repeat and of the upstream CpG island, which correlates with gene silencing and absence of the FMR1 protein. Cognitive f...
متن کاملReactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome
Fragile X syndrome (FXS) is a common cause of intellectual disability that is most often due to a CGG-repeat expansion mutation in the FMR1 gene that triggers epigenetic gene silencing. Epigenetic modifying drugs can only transiently and modestly induce FMR1 reactivation in the presence of the elongated CGG repeat. As a proof-of-principle, we excised the expanded CGG-repeat in both somatic cell...
متن کاملLoss of FMR1 hypermethylation in somatic cell heterokaryons.
Fragile X syndrome is associated with a trinucleotide (CGG) repeat expansion in the 5'-untranslated region of the FMR1 gene and hypermethylation of the FMR1 promoter. Rare cases of clinically normal males (HFM) have been identified with an expanded CGG repeat; however, here, the FMR1 promoter is not methylated. Using classical complementation (cell fusion) studies, we analyzed if possible diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 30 14 شماره
صفحات -
تاریخ انتشار 2002